Giải bài tập 9.7 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:17:51

Đề bài

Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\).

Phương pháp giải - Xem chi tiết

+ Áp dụng định lí Pythagore vào tam giác ABC vuông tại A tính BC.

+ Vì O là trung điểm của BC nên\(OB = OC = \frac{{BC}}{2}\) là bán kính đường tròn (O) ngoại tiếp tam giác ABC.

Lời giải chi tiết

Tam giác ABC vuông cân tại A nên \(AB = AC = 2\sqrt 2 cm\)

Áp dụng định lí Pythagore vào tam giác ABC vuông tại A ta có:

\(B{C^2} = A{B^2} + A{C^2} = {\left( {2\sqrt 2 } \right)^2} + {\left( {2\sqrt 2 } \right)^2} = 16 \Rightarrow BC = 4cm\)

Vì O là trung điểm của BC nên \(OB = OC = \frac{{BC}}{2} = \frac{4}{2} = 2\left( {cm} \right)\)

Vì tam giác ABC vuông tại A nên tam giác ABC nội tiếp đường tròn tâm O, bán kính OC.

Vậy bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng 2cm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"