Giải bài tập 10.27 trang 109 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:18:57

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính thể tích của hình nón có đỉnh là tâm O của hình vuông ABCD và đáy là hình tròn tiếp xúc với các cạnh của hình vuông A’B’C’D’ (H.10.38).

 

Phương pháp giải - Xem chi tiết

+ Hình nón có chiều cao \(h = a\), bán kính đáy \(R = \frac{{A'B'}}{2} = \frac{a}{2}\).

+ Thể tích hình nón chiều cao h, bán kính R là: \(V = \frac{1}{3}\pi {R^2}h\).

Lời giải chi tiết

Hình nón đã cho có chiều cao \(h = a\).

Vì đáy hình nón là đường tròn nội tiếp hình vuông A’B’C’D’ nên bán kính đáy là:

\(R = \frac{{A'B'}}{2} = \frac{a}{2}\).

Thể tích của hình nón là:

\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {\left( {\frac{a}{2}} \right)^2}a = \frac{{{a^3}\pi }}{{12}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"