Giải bài 7 trang 65 vở thực hành Toán 9

2024-09-14 18:41:12

Đề bài

Sử dụng định nghĩa căn bậc ba, chứng minh rằng \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2  + 1\).

Phương pháp giải - Xem chi tiết

Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)).

Lời giải chi tiết

Theo định nghĩa, \(\sqrt[3]{{7 + 5\sqrt 2 }}\) là một số thực x thỏa mãn \({x^3} = 7 + 5\sqrt 2 \).

Vì vậy, để chứng minh \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2  + 1\) chỉ cần chứng tỏ \({\left( {\sqrt 2  + 1} \right)^3} = 7 + 5\sqrt 2 \)

Thật vậy áp dụng hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) ta có:

\({\left( {\sqrt 2  + 1} \right)^3} = {\left( {\sqrt 2 } \right)^3} + 3{\left( {\sqrt 2 } \right)^2} + 3\sqrt 2  + 1 \\= 2\sqrt 2  + 6 + 3\sqrt 2  + 1 = 7 + 5\sqrt 2 \)

Vậy \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2  + 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"