Giải bài 2.11 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1

2024-09-14 18:49:40

Đề bài

Cho \(a > b > 0\), chứng minh rằng

a) \({a^2} > ab\) và \(ab > {b^2}\);

b) \({a^2} > {b^2}\) và \({a^3} > {b^3}\).

Chú ý: Tính chất “Với \(a > b > 0\) thì \({a^2} > {b^2}\) và \({a^3} > {b^3}\)” thường hay dùng trong nhiều bài toán chứng minh bất đẳng thức.

Phương pháp giải - Xem chi tiết

a) Với ba số a, b, c và \(c > 0\) ta có: \(a > b\) thì \(ac > bc\).

b) Nếu \(a > b,b > c\) thì \(a > c\).

Lời giải chi tiết

a) Vì \(a > b > 0\) nên:

+ \(a.a > ab\), suy ra \({a^2} > ab\).

+ \(a.b > b.b\), suy ra \(ab > {b^2}\).

b) Theo ý a và tính chất bắc cầu ta có: \({a^2} > {b^2}\).

Do đó, \({a^2}.a > {b^2}.a\) và \({b^2}.a > {b^2}.b\).

Suy ra \({a^3} > {b^3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"