Giải bài 6.4 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2

2024-09-14 18:50:44

Đề bài

Xác định hệ số a của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), biết đồ thị của hàm số đi qua điểm:

a) \(A\left( { - \frac{1}{2}; - \frac{3}{2}} \right)\);

b) \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{4}} \right)\).

Phương pháp giải - Xem chi tiết

a) Thay \(x = \frac{{ - 1}}{2};y = \frac{{ - 3}}{2}\) vào hàm số \(y = a{x^2}\) tìm được a.

b) Thay \(x = \frac{1}{2};y = \frac{{\sqrt 3 }}{4}\) vào hàm số \(y = a{x^2}\) tìm được a.

Lời giải chi tiết

a) Đồ thị của hàm số \(y = a{x^2}\) đi qua điểm \(A\left( { - \frac{1}{2}; - \frac{3}{2}} \right)\) nên ta có: \( - \frac{3}{2} = a.{\left( {\frac{{ - 1}}{2}} \right)^2}\),

suy ra \(\frac{1}{4}a = \frac{{ - 3}}{2}\) nên \(a =  - 6\).

b) Đồ thị của hàm số \(y = a{x^2}\) đi qua điểm \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{4}} \right)\) nên ta có: \(\frac{{\sqrt 3 }}{4} = a.{\left( {\frac{1}{2}} \right)^2}\),

suy ra \(\frac{1}{4}a = \frac{{\sqrt 3 }}{4}\) nên \(a = \sqrt 3 \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"