Giải bài 31 trang 22 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:54:29

Đề bài

Hai khu công nghiệp A và B có tổng cộng 2 200 công nhân. Sau khi chuyển 100 công nhân ở khu A sang khu B thì \(\frac{2}{3}\) số công nhân ở khu A bằng \(\frac{4}{5}\) số công nhân ở khu B. Tính số công nhân ở mỗi khu công nghiệp lúc ban đầu.

Phương pháp giải - Xem chi tiết

Bước 1: Đặt 2 ẩn là số công nhân ở mỗi khu công nghiệp lúc ban đầu.

Bước 2: Viết phương trình thể hiện tổng số công nhân của 2 khu.

Bước 3: Biểu thị số công nhân của 2 khu sau khi chuyển 100 người từ khu A sang khu B.

Bước 4: Viết phương trình thể hiện mối quan hệ giữa số công nhân của 2 khu sau khi chuyển.

Bước 5: Giải hệ, đối chiếu điều kiện và kết luận.

Lời giải chi tiết

Gọi số công nhân ở mỗi khu công nghiệp A,B lúc ban đầu lần lượt là

\(x,y (0 < x,y < 2200{;^{}}x > 100,x,y \in \mathbb{N})\).

Do khu công nghiệp A và B có tổng cộng 2 200 công nhân nên ta có phương trình \(x + y = 2200\)

Sau khi chuyển 100 công nhân ở khu A sang khu B thì số công nhân của 2 khu lần lượt là \(x - 100;y + 100\) công nhân.

Khi đó \(\frac{2}{3}\) số công nhân ở khu A bằng \(\frac{4}{5}\) số công nhân ở khu B nên ta có phương trình

\(\frac{2}{3}\left( {x - 100} \right) = \frac{4}{5}\left( {y + 100} \right)\) hay \(5x - 6y = 1100\)

Ta lập được hệ phương trình \(\left\{ \begin{array}{l}x + y = 2200\left( 1 \right)\\5x - 6y = 1100\left( 2 \right)\end{array} \right.\)

Từ (1) ta được \(x = 2200 - y\)(3). Thay (3) vào (2) ta có:

\(\begin{array}{l}5\left( {2200 - y} \right) - 6y = 1100\\11y = 9900\\y = 900\end{array}\)

Thay \(y = 900\) vào (3), suy ra \(x = 2200 - 900 = 1300\).

Ta thấy \(x = 1300,y = 900\) thỏa mãn điều kiện. Vậy số công nhân ở mỗi khu công nghiệp A, B lúc ban đầu lần lượt là 1300 và 900 công nhân.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"