Đề bài
Giải các phương trình sau:
a) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{16}}{{{x^2} - 1}}\)
b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)
Phương pháp giải - Xem chi tiết
- Tìm điều kiện xác định.
- Quy đồng khử mẫu.
Lời giải chi tiết
a) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{16}}{{{x^2} - 1}}\)
Điều kiện xác định: \(x \ne \pm 1\)
\(\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{16}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\(\begin{array}{l}{x^2} + 2x + 1 - {x^2} + 2x - 1 = 16\\4x = 16\\x = 4\end{array}\)
Ta thấy \(x = 4\) thỏa mãn điều kiện. Vậy phương trình có nghiệm \(x = 4\).
b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)
Điều kiện xác định: \(x \ne \pm 2,x \ne 0\)
\(\begin{array}{l}\frac{{2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{x\left( {x + 2} \right)\left( {x - 2} \right)}} = 0\\2x - \left( {{x^2} + x - 2} \right) + \left( {{x^2} - 6x + 8} \right) = 0\\2x - {x^2} - x + 2 + {x^2} - 6x + 8 = 0\\ - 5x = - 10\\x = 2\end{array}\)
Ta thấy \(x = 2\) không thỏa mãn điều kiện. Vậy phương trình vô nghiệm.