Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

2024-09-14 19:31:13

Đề bài

Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \(\left( { - 2 \le x \le 2} \right)\), mặt cắt là tam giác vuông có một góc \({45^o}\) và độ dài một cạnh góc vuông là \(\sqrt {4 - {x^2}} \) (dm). Tính thể tích của vật thể.

 

Phương pháp giải - Xem chi tiết

Tính diện tích mặt cắt \(S\left( x \right)\), sau đó tính thể tích vật thể bằng công thức \(V = \int\limits_a^b {S\left( x \right)dx} \).

Lời giải chi tiết

Vì mặt cắt là một tam giác vuông có một góc \({45^o}\), nên mặt cắt là tam giác vuông cân. Do đó diện tích mặt cắt là \(S\left( x \right) = \frac{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}}{2} = \frac{{4 - {x^2}}}{2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\frac{{4 - {x^2}}}{2}dx}  = \frac{1}{2}\int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx}  = \frac{1}{2}\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^2 = \frac{{16}}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"