Giải mục 1 trang 21, 22, 23 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:31:53

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 21 SGK Toán 12 Cánh diều

Xét hàm số \(y = f\left( x \right) = \frac{{26x + 10}}{{x + 5}}\) với \(x \in [0; + \infty )\) có đồ thị là đường cong ở Hình 10 trong bài toán mở đầu. Tìm \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\).

Phương pháp giải:

Quan sát đồ thị 

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 26\)


LT1

Trả lời câu hỏi Luyện tập 1 trang 22 SGK Toán 12 Cánh diều

Tìm tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\).

Phương pháp giải:

Đường thẳng \(y = {y_o}\) được gọi là đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_o}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_o}\).

Lời giải chi tiết:

Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3x - 2}}{{x + 1}} = 3\\\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3x - 2}}{{x + 1}} = 3\end{array} \right.\).

Vậy đường thẳng \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"