Lý thuyết Nguyên hàm Toán 12 Cánh Diều

2024-09-14 19:33:00

1. Khái niệm nguyên hàm

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x)=f(x) với mọi x thuộc K.

Chú ý:

Cho K là một khoảng, đoạn hoặc nửa khoảng của tập số thực R

Giả sử hàm số F(x) là một nguyên hàm của f(x) trên K. Khi đó:

a) Với mỗi hằng số C, hàm số F(x) + C cũng là một nguyên hàm của f(x) trên K

b) Nếu hàm số G(x) là một nguyên hàm của f(x) trên K thì tồn tại một hằng số C sao chp G(x) = F(x) + C với mọi x thuộc K

Họ (hay tập hợp) tất cả các nguyên hàm của hàm số f(x) trên K được kí hiệu là

\(\int {f(x)dx = F(x) + C} \)

2. Tính chất của nguyên hàm

  • \(\int {kf(x)dx = k\int {f(x)dx(k \ne 0)} } \)
  • \(\int {\left[ {f(x) + g(x)} \right]} dx = \int {f(x)dx + \int {g(x)dx} } \)
  • \(\int {\left[ {f(x) - g(x)} \right]} dx = \int {f(x)dx - \int {g(x)dx} } \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"