Bài 3.60 trang 134 SBT hình học 12

2024-09-14 19:37:37

Đề bài

Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x =  - 3 + 2t}\\{y = 1 - t}\\{z =  - 1 + 4t}\end{array}} \right.\)

Viết phương trình đường thẳng \(\Delta \) đi qua A, cắt và vuông góc với đường thẳng d.

Phương pháp giải - Xem chi tiết

- Tham số hóa tọa độ giao điểm của \(d\) và \(\Delta \).

- Sử dụng điều kiện vuông góc của \(\Delta \) và \(d\) tìm tọa độ giao điểm ở trên.

- Viết phương trình đường thẳng đi qua hai điểm và kết luận.

Lời giải chi tiết

Ta có:  \(\overrightarrow {{a_d}}  = (2; - 1;4)\)

Xét điểm \(B(–3 + 2t; 1 – t ; –1 + 4t) \) thì \(\overrightarrow {AB}  = (1 + 2t;3 - t; - 5 + 4t)\)

\(AB \bot d \Leftrightarrow \overrightarrow {AB} .\overrightarrow {{a_d}}  = 0\)\( \Leftrightarrow 2(1 + 2t) - (3 - t) + 4( - 5 + 4t) = 0\) \( \Leftrightarrow t = 1\)

Suy ra  \(\overrightarrow {AB}  = (3;2; - 1)\)

Vậy phương trình của \(\Delta \)  là: \(\dfrac{{x + 4}}{3} = \dfrac{{y + 2}}{2} = \dfrac{{z - 4}}{{ - 1}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"