LG a
Tìm các số thực b, c để phương trình (với ẩn z): \({z^2} + bz + c = 0\) nhận \(z = 1 + i\) làm một nghiệm.
Phương pháp giải:
Phương trình \(f(z)=0\) nhận \(z=z_0\) làm nghiệm nếu \(f(z_0)=0\)
Lời giải chi tiết:
\(1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) khi và chỉ khi
\({\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\) \( \Leftrightarrow 1 + 2i - 1 + b + bi + c = 0\) \( \Leftrightarrow 2i + b + bi + c = 0\)
\( \Leftrightarrow b + c + \left( {2 + b} \right)i = 0\) \( \Leftrightarrow \left\{ \matrix{ b + c = 0 \hfill \cr 2 + b = 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ b = - 2 \hfill \cr c = 2 \hfill \cr} \right.\)
LG b
Tìm các số thực a, b, c để phương trình (với ẩn z):
\({z^3} + a{z^2} + bz + c = 0\)
nhận \(z = 1 + i\) làm nghiệm và cũng nhận \(z = 2\) là nghiệm.
Lời giải chi tiết:
\(1 + i\) là một nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi
\({\left( {1 + i} \right)^3} + a{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \) \( \Leftrightarrow \left( {1 + 3i + 3{i^2} + {i^3}} \right) + a\left( {1 + 2i - 1} \right) \) \(+ b + bi + c = 0\) \( \Leftrightarrow \left( {1 + 3i - 3 - i} \right) + a.2i \) \(+ b + bi + c = 0\) \( \Leftrightarrow - 2 + 2i + 2ai + b + c + bi = 0\)
\(\Leftrightarrow \left( {b + c - 2} \right)+\left( {2 + 2a + b} \right)i = 0\)
\( \Leftrightarrow \left\{ \matrix{ b + c - 2 = 0\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr 2a + b + 2 = 0\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
\(2\) là nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi \(8 + 4a + 2b + c = 0\,\,\,\left( 3 \right)\)
Từ (1), (2), (3) ta có hệ: .\(\left\{ \matrix{ b + c = 2 \hfill \cr 2a + b = - 2 \hfill \cr 4a + 2b + c = - 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = - 4 \hfill \cr b = 6 \hfill \cr c = - 4 \hfill \cr} \right.\)
[hoctot.me - Trợ lý học tập AI]