Bài 25 trang 199 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:38

LG a

Tìm các số thực b, c để phương trình (với ẩn z): \({z^2} + bz + c = 0\) nhận \(z = 1 + i\) làm một nghiệm.

Phương pháp giải:

Phương trình \(f(z)=0\) nhận \(z=z_0\) làm nghiệm nếu \(f(z_0)=0\)

Lời giải chi tiết:

\(1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) khi và chỉ khi

\({\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\) \( \Leftrightarrow 1 + 2i - 1 + b + bi + c = 0\) \( \Leftrightarrow 2i + b + bi + c = 0\)

\( \Leftrightarrow b + c + \left( {2 + b} \right)i = 0\) \( \Leftrightarrow \left\{ \matrix{  b + c = 0 \hfill \cr  2 + b = 0 \hfill \cr}  \right.\) \( \Leftrightarrow \left\{ \matrix{  b =  - 2 \hfill \cr  c = 2 \hfill \cr}  \right.\)


LG b

Tìm các số thực a, b, c để phương trình (với ẩn z):

\({z^3} + a{z^2} + bz + c = 0\)

nhận \(z = 1 + i\) làm nghiệm và cũng nhận \(z = 2\) là nghiệm.

Lời giải chi tiết:

\(1 + i\) là một nghiệm của \({z^3} + a{z^2} + bz + c = 0\)  khi và chỉ khi

\({\left( {1 + i} \right)^3} + a{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \) \( \Leftrightarrow \left( {1 + 3i + 3{i^2} + {i^3}} \right) + a\left( {1 + 2i - 1} \right) \) \(+ b + bi + c = 0\) \( \Leftrightarrow \left( {1 + 3i - 3 - i} \right) + a.2i \) \(+ b + bi + c = 0\) \( \Leftrightarrow  - 2 + 2i + 2ai + b + c + bi = 0\)

\(\Leftrightarrow \left( {b + c - 2} \right)+\left( {2 + 2a + b} \right)i = 0\)

\( \Leftrightarrow \left\{ \matrix{  b + c - 2 = 0\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr  2a + b + 2 = 0\,\,\,\,\,\left( 2 \right) \hfill \cr}  \right.\)

\(2\) là nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi \(8 + 4a + 2b + c = 0\,\,\,\left( 3 \right)\)

Từ (1), (2), (3) ta có hệ: .\(\left\{ \matrix{  b + c = 2 \hfill \cr  2a + b =  - 2 \hfill \cr  4a + 2b + c =  - 8 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  a =  - 4 \hfill \cr  b = 6 \hfill \cr  c =  - 4 \hfill \cr}  \right.\) 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"