Bài 35 SGK trang 104 Hình học 12 Nâng cao

2024-09-14 19:42:02

Tìm khoảng cách giữa hai đường thẳng sau:

LG a

\(d:\left\{ \matrix{
x = 1 + t \hfill \cr 
y = - 1 - t \hfill \cr 
z = 1 \hfill \cr} \right.\) và

\(d':\left\{ \matrix{
x = {2 - 3t'} \hfill \cr 
y ={ - 2 + 3t'} \hfill \cr 
z = 3 \hfill \cr} \right.\)

Phương pháp giải:

- Chứng minh d//d'

- Tính d(d,d')=d(M,d').

Lời giải chi tiết:

Đường thẳng d đi qua \({M_1}\left( {1; - 1;1} \right)\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1; - 1;0} \right)\).
Đường thẳng d’ đi qua điểm \({M_2}\left( {2; - 2;3} \right)\), có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;0} \right)\). Vì \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương nhưng \(\overrightarrow {{u_1}} \); \(\overrightarrow {{u_2}} \) không cùng phương với \(\overrightarrow {{M_1}{M_2}}  = \left( {1; - 1;2} \right)\) nên hai đường thẳng đó song song.

Vậy khoảng cách giữa d và d’ là khoảng cách từ \(M_1\)(1, -1, 1) ∈ d đến đường thẳng d’ và bằng : \(d = \frac{{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_2}} } \right|}}\)

Ta có: \(\overrightarrow {{M_1}{M_2}}  = \left( {1; - 1;2} \right)\)  suy ra \(\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right] = \left( { - 6; - 6;0} \right)\)

Vậy khoảng cách cần tìm là:

\(d = \frac{{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_2}} } \right|}}\)\( = \frac{{\sqrt {36 + 36 + 0} }}{{\sqrt {6 + 9} }} = 2\)


LG b

\(d:\,{x \over { - 1}} = {{y - 4} \over 1} = {{z + 1} \over { - 2}}\) và

\(d':\left\{ \matrix{
x ={ - t'} \hfill \cr 
y = {2 + 3t'} \hfill \cr 
z = {- 4 + 3t'} \hfill \cr} \right.\)

Phương pháp giải:

Khoảng cách giữa hai đường thẳng chéo nhau: \(d = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)

Lời giải chi tiết:

Đường thẳng d đi qua \(M\left( {0;4; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 1;1; - 2} \right)\).
Đường thẳng d’ đi qua \(M'\left( {0;2; - 4} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( { - 1;3;3} \right)\).
Ta có \(\overrightarrow {MM'}  = \left( {0; - 2; - 3} \right);\) \(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right] = \left( {9;5; - 2} \right)\).
\( \Rightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'}  =  - 4 \ne 0 \)

\(\Rightarrow d\) và d’ chéo nhau.
Khoảng cách giữa \({d_1}\) và \({d_2}\) là:

\(d = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {4 \over {\sqrt {{9^2} + {5^2} + {2^2}} }} = {{2\sqrt {110} } \over {55}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"