Bài 24 trang 102 SGK Hình học 12 Nâng cao

2024-09-14 19:42:05

Viết phương trình tham số và chính tắc (nếu có) của các đường thẳng sau đây:

LG a

Các trục tọa độ Ox, Oy, Oz.

Phương pháp giải:

Đường thẳng đi qua điểm \(M(x_0;y_0;z_0)\) và nhận véc tơ \(\overrightarrow n  = \left( {a;b;c} \right)\) làm VTCP có phương trình 

\(\left\{ \begin{array}{l}
x = {x_0} + at\\
y = {y_0} + bt\\
z = {z_0} + ct
\end{array} \right.,t \in R\)

Lời giải chi tiết:

Trục Ox đi qua O(0; 0; 0) và có vectơ chỉ phương \(\overrightarrow i  = \left( {1;0;0} \right)\) nên có phương trình tham số là 

\(\left\{ \matrix{
x = t \hfill \cr 
y = 0 \hfill \cr 
z = 0 \hfill \cr} \right.\)

Tương tự, trục Oy có phương trình tham số là

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = t \hfill \cr 
z = 0 \hfill \cr} \right.\)

Trục Oz có phương trình tham số là

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = 0 \hfill \cr 
z = t \hfill \cr} \right.\)

Các phương trình đó không có phương trình chính tắc.


LG b

Các đường thẳng đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) (với \({x_0}.{y_0}.{z_0} \ne 0\)) và song song với mỗi trục tọa độ;

Lời giải chi tiết:

Đường thẳng đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) song song với trục Ox có vectơ chỉ phương \(\overrightarrow i  = \left( {1;0;0} \right)\) nên có phương trình tham số là 

\(\left\{ \matrix{
x = {x_0} + t \hfill \cr 
y = {y_0} \hfill \cr 
z = {z_0} \hfill \cr} \right.\)

Tương tự đường thẳng đi qua \({M_0}\) với trục Oy có phương trình tham số là \(\left\{ \matrix{
x = {x_0} \hfill \cr 
y = {y_0} + t \hfill \cr 
z = {z_0} \hfill \cr} \right.\)

Đường thẳng đi qua \({M_0}\) với trục Oz có phương trình tham số là

\(\left\{ \matrix{
x = {x_0} \hfill \cr 
y = {y_0} \hfill \cr 
z = {z_0} + t \hfill \cr} \right.\)

Các đường thẳng trên không có phương trình chính tắc.


LG c

Đường thẳng đi qua \(M\left( {2;0; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 1;3;5} \right)\);

Lời giải chi tiết:

Đường thẳng đi qua \(M\left( {2;0; - 1} \right)\) có vectơ chỉ phương có phương trình tham số: \(\overrightarrow u  = \left( { - 1;3;5} \right)\) Tương tự đường thẳng đi qua \({M_0}\) với trục Oy có phương trình tham số là

\(\left\{ \matrix{
x = 2 - t \hfill \cr 
y = 3t \hfill \cr 
z = - 1 + 5t \hfill \cr} \right.\) và có phương trình chính tắc \({{x - 2} \over { - 1}} = {y \over 3} = {{z + 1} \over 5}\).


LG d

Đường thẳng đi qua \(N\left( { - 2;1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {0;0; - 3} \right)\);

Lời giải chi tiết:

Đường thẳng đi qua \(N\left( { - 2;1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {0;0; - 3} \right)\) có phương trình tham số

\(\left\{ \matrix{
x = - 2 \hfill \cr 
y = 1 \hfill \cr 
z = 2 - 3t \hfill \cr} \right.\)

Không có phương trình chính tắc.


LG e

Đường thẳng đi qua \(N\left( {3;2;1} \right)\) và vuông góc với mặt phẳng \(2x - 5y + 4 = 0\);

Lời giải chi tiết:

Vectơ chỉ phương \(\overrightarrow u \) của đường thẳng là vectơ pháp tuyến của mặt phẳng \(2x - 5y + 4 = 0\) nên \(\overrightarrow u  = \left( {2; - 5;0} \right)\).

Vậy đường thẳng có phương trình tham số

\(\left\{ \matrix{
x = 3 + 2t \hfill \cr 
y = 2 - 5t \hfill \cr 
z = 1 \hfill \cr} \right.\)

Không có phương trình chính tắc.


LG g

Đường thẳng đi qua \(P\left( {2;3; - 1} \right)\) và \(Q\left( {1;2;4} \right)\).

Lời giải chi tiết:

Đường thẳng đi qua \(P\left( {2;3; - 1} \right)\) có vectơ chỉ phương \(\overrightarrow {PQ}  = \left( { - 1; - 1;5} \right)\) nên có phương trình tham số là

\(\left\{ \matrix{
x = 2 - t \hfill \cr 
y = 3 - t \hfill \cr 
z = - 1 + 5t \hfill \cr} \right.\)

và có phương trình chính tắc là \({{x - 2} \over { - 1}} = {{y - 3} \over { - 1}} = {{z + 1} \over 5}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"