Tìm số tự nhiên x,biết rằng 160:x,360:x và 10<x<40
-
-
-
- Lớp 2
- Tự nhiên và xã hội
- Tiếng việt
- Toán học
- Tiếng Anh
- Đạo đức
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 4
- Khoa học
- Tiếng việt
- Toán học
- Đạo đức
- Tiếng Anh
- Lịch sử và Địa lí
- Công nghệ
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 5
- Khoa học
- Toán học
- Tiếng việt
- Tin học
- Tiếng Anh
- Đạo đức
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- Lớp 6
- Công nghệ
- Tin học
- Lịch sử và Địa lí
- GDCD
- Ngữ văn
- Toán học
- Khoa học tự nhiên
- Tiếng Anh
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 7
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Lịch sử và Địa lí
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Âm nhạc
- Lớp 8
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Ngữ văn
- Khoa học tự nhiên
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 9
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Lịch sử và Địa lí
- Lớp 10
- Hóa học
- Tiếng Anh
- Lịch sử
- Sinh học
- Địa lí
- Vật lí
- Tin học
- Toán học
- GD kinh tế và pháp luật
- Công nghệ
- Ngữ văn
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- GD Quốc phòng và An ninh
- Lớp 11
- Hóa học
- Tiếng Anh
- Vật lí
- Tin học
- Toán học
- Địa lí
- Công nghệ
- Lịch sử
- Ngữ văn
- Sinh học
- GD Thể chất
- GD Quốc phòng và An ninh
- GD kinh tế và pháp luật
- HĐ trải nghiệm, hướng nghiệp
-
-
- EXPLORE
-
-
-
-
-
-
-
-
- FAVORITES
-
Tìm số tự nhiên x,biết rằng 160:x,360:x và 10<x<40
This anwser using AI, please
Để tìm số tự nhiên x thỏa mãn điều kiện 160:x và 360:x, chúng ta cần hiểu rằng x phải là một ước của cả hai số 160 và 360. Trước tiên, chúng ta sẽ tìm các ước của 160 và 360.
Bước 1: Phân tích số ra thừa số nguyên tố.
- 160 = 2^5 * 5
- 360 = 2^3 3^2 5
Bước 2: Tìm các ước của 160 và 360.
Các ước của 160 là: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40.
Các ước của 360 là: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 60, 72, 90, 120, 180, 360.
Bước 3: Lấy giao của hai tập hợp các ước này.
Giao của các ước của 160 và 360 là: 1, 2, 4, 5, 8, 10, 20.
Bước 4: Kiểm tra điều kiện 10 < x < 40.
Trong tập hợp các ước chung, chúng ta chỉ cần chú ý đến các số nằm trong khoảng từ 10 đến 40.
Các số này là: 10, 20.
Như vậy, các số tự nhiên x thỏa mãn điều kiện 160:x và 360:x với điều kiện 10 < x < 40 chỉ có x = 20.
Vậy kết luận cuối cùng là x = 20.
Bước 1: Phân tích số ra thừa số nguyên tố.
- 160 = 2^5 * 5
- 360 = 2^3 3^2 5
Bước 2: Tìm các ước của 160 và 360.
Các ước của 160 là: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40.
Các ước của 360 là: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 60, 72, 90, 120, 180, 360.
Bước 3: Lấy giao của hai tập hợp các ước này.
Giao của các ước của 160 và 360 là: 1, 2, 4, 5, 8, 10, 20.
Bước 4: Kiểm tra điều kiện 10 < x < 40.
Trong tập hợp các ước chung, chúng ta chỉ cần chú ý đến các số nằm trong khoảng từ 10 đến 40.
Các số này là: 10, 20.
Như vậy, các số tự nhiên x thỏa mãn điều kiện 160:x và 360:x với điều kiện 10 < x < 40 chỉ có x = 20.
Vậy kết luận cuối cùng là x = 20.
Post Reply
© 2025 Học Tốt Online - Chia Sẻ Tài Liệu Học Tập và Giải Bài Tập Miễn Phí
Spanish
