Giải bài 24 trang 89 sách bài tập toán 9 - Cánh diều tập 1

2024-09-14 18:55:08

Đề bài

Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m. Người đó nhìn hai vị trí A và B của hai đầu một cây cầu theo phương MA và MB tạo với phương nằm ngang Mx các góc lần lượt là \(\widehat {AMx} = 37^\circ ,\widehat {BMx} = 31^\circ \)với Mx // AB (Hình 24). Hỏi độ dài AB của cây cầu là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Phương pháp giải - Xem chi tiết

Bước 1: Áp dụng tỉ số lượng giác trong 2 tam giác HMA và HMB để tính HA, HB.

Bước 2: \(AB = HB - HA\).

Lời giải chi tiết

Do Mx // AB nên \(\widehat {AMx} = \widehat {MAH} = 37^\circ \), \(\widehat {BMx} = \widehat {MBH} = 31^\circ \) (các cặp góc so le trong).

Xét tam giác MAH vuông tại H ta có:

\(\tan \widehat {MAH} = \frac{{MH}}{{AH}}\) hay \(AH = \frac{{MH}}{{\tan \widehat {MAH}}} = \frac{{920}}{{\tan 37^\circ }}\)

Xét tam giác MBH vuông tại H ta có:

\(\tan \widehat {MBH} = \frac{{MH}}{{BH}}\) hay \(BH = \frac{{MH}}{{\tan \widehat {MBH}}} = \frac{{920}}{{\tan 31^\circ }}\)

Độ dài AB của cây cầu là:

\(AB = HB - HA = \frac{{920}}{{\tan 31^\circ }} - \frac{{920}}{{\tan 37^\circ }} \approx 310\)m.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"